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Statistical Mechanical Properties of Polymer 
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The statistical mechanical properties of plane polymer loops enclosing a 
constant area are investigated, using a continuous model from the start. For this 
purpose an analytic expression for the generating functional is obtained, which 
in turn is used to derive (1) the  distribution function for the enclosed area, 
(2) the average squared distance of a given repeating unit from the origin, and 
(3) the entropic force on a repeating unit. 

KEY W O R D S :  Polymers; path integrals; constraints. 

1. I N T R O D U C T I O N  

Many physical properties of concentrated polymeric systems are due to the 
mutual entanglements of these chainlike molecules. Although the theory of 
polymeric systems is now coming to maturity (see the recent monograph 
by Doi and Edwards(l/), the analytical treatment of topological 
entanglements is still unsatisfactory. The mathematical description of 
various simple entanglements, as well as of knots and links, was recently 
reviewed by Wiegel. (2) A new way to work directly in covering space forms 
the subject of ref. 3 and the exactly solvable cases involving constraints 
were discussed in ref. 4. In all these exactly solvable models the number of 
polymers was restricted to 1 or 2, and no exact solutions exist for the case 
in which many polymers are involved. 
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It is therefore of interest to simulate the topology of entangled 
polymers in a variety of ways. Recently, Brereton and Butler (5) suggested a 
new way to do this: (1) represent a polymer by a random walk of N steps 
in a plane; each step has length I; (2)approximate the steric and 
topological effects of the other polymers in the system by the constraint 
that this walk encloses a fixed (algebraic) area. In view of the simplicity of 
this model for entangled polymers, crude as it might be, we have used it to 
calculate a variety of statistical properties of the configurations. In doing 
this we have used a continuous model from the start, as reported in ref. 6. 

2. T H E  G E N E R A T I N G  F U N C T I O N  

It will turn out that all quantities of interest can be derived from a 
generating function Z which is defined by the path integral 

r', N dx 

N(dr~Zdvld[r(v)] (2.1) x exp [q"  r (N ' ) -~2  f0 \dr/  

In this formula the notation of ref. 2 is used for the path integral over all 
paths (polymer configurations) in the plane which start at r' and end in r". 
The vector q is an auxiliary variable, and 0 < N' < N. The delta function in 
the integrand limits the paths to those for which the enclosed algebraic 
area equals 

1 ;N f dy dx) 
A 2~o ~ dv Y--~v = - x - -  - dv (2.2) 

The use of this formula requires some words of caution. 

1. The phrase "enclosed area" in practice ceases to be physically 
meaningful for open chains. However, one can define the algebraic area of 
an open chain as the algebraic area of the loop closed by joining the two 
endpoints by a straight line. The algebraic area A for a closed curve, on the 
other hand, is meaningful both physically and mathematically. 

2. The expression (2.2) is the symmetrical form of the two 
expressions 

A = f x dy and A= - f y dx 

3. If the closed loop has no double points, then (2.2) equals the 
geometrical area, where the plus sign obtains if the enclosed area is always 
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situated to the left of the polymer configuration and the minus sign obtains 
if the opposite holds. If the closed loop has one or more double points, the 
algebraic area (2.2) is not exactly equal to the geometrical area, because 
some "dangling" loops will be counted with the wrong sign; moreover, 
some subareas will be counted by (2.2) more than once. 

4. For self-avoiding plane polymer configurations (which we shall 
not study in this paper) the loops cannot have any double points, hence 
eq. (2.2) is identical to the geometrical area, apart from the sign. Such 
configurations were recently studied by Leibler eta/. (7) in a slightly 
different context. 

The three main quantities of physical interest and their relation to the 
generating function are as follows: 

(a) The probability density P(A, N) that a closed polymer con- 
figuration will enclose an algebraic area Ais  given by 

P(A,N)=(TrNI2)Z with (if=0, r"=0,  q = 0 )  (2.3) 

(b) The average (r2(N'))  of the position of repeating unit N', 
squared, when both endpoints are fixed at the origin, is given by 

( rZ(N ' ) )=  ~--~.?---~Z with (if=0, r"=0,  !1=0 ) (2.4) 

(c) The configuration sum density •(A,R) over all those polymer 
configurations which span an area equal to A and for which 
r ( N ' ) -  r(0)= R is given by 

1 
(2(A, R) =~  NI 2 f Z(I I = -iX) exp(i~. R) d2~ (2.5) 

In order to proceed with the evaluation of the generating function, one 
represents the delta function in the integrand of (2.1) by a Fourier integral, 
which gives 

Z(A) = -  Z(g) exp(igA) dg (2.6) 
o o  

2(g )=f r i i ' : exp[ -~Ldv+t l . r (N ' ) ]d[ r ( v ) ]  (2.7) 

The "Langrangian" is given by 

%(dr)2 i (xdY ydx) 
L = 12 \dvJ  +~  g dv dvJ (2.8) 
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As the second term q- r (N ' )  in the exponent of (2.7) depends on the 
position of repeating unit N' only, it is straightforward to perform the path 
integral over all other positions and to show that 

? ( g ) = f  G(r",Ntr, N')exp(q.r)G(r,N'Jr',O)d3r (2.9) 

The function G was calculated in ref. 6 and found to be given by 

where 

G(Xl, Yl, N11xo, Yo, 0) 

(D o 

2zrl 2 sin(�89 

(D O 
x exp ~ -  (Xo y 1 - -  

1 

xl O~o x 2 _ yo)2] yo)-T~I(x~- o) +(y, 

(2.10) 

1 _ _ u  e x p I ~  s i n h a u s i n h ( 1 - a ) u ]  (2.13) 
Zc(g) - uNl--: sinh u si-'~ u 

where we introduced the dimensionless scaled quantities 

u =- ~Ngl 2 

~=1N~212 

-= N'/N 

(2.14a) 

(2.i4b) 

(2.14c) 

can be evaluated in a straightforward manner, with the result 

,Oo = - �89 (2 .11)  

For closed polymers we set r ' =  r ' =  0 in Eqs. (2.9) and (2.10); this is 
convenient and physically interesting, but does limit the generality of the 
results (similar results can be derived for open chains). The resulting 
integral 

(c"~ sini~(N-N')~Oo]} ~ 2c(g) --  \ ~ - V /  
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The generating function Zc(A ) for a closed polymer is found upon sub- 
stitution of (2.13) into (2.6) 

~ f  ~ u e x p l i u ~ + ~ s i n h ~ u s i n h ( 1 - c ~ ) U ] d  u (2.15) 
Zc(A) = -o~ si1{-h u sinh u 

where 

~=4A/Nl  2 (2.16) 

This completes the analytic calculation of the generating functional. 

3. C O N F I G U R A T I O N A L  PROPERTIES 

In this section we calculate the three quantities of interest quoted 
under a, b and c in Section 2. The probability density P(A, N) tha t  a closed 
polymer configuration will enclose an algebraic area A is found from (2.3) 
and (2.15) to be given by 

2 ~ u exp(iu~)du= 2 N / 2 c o s h 2 \ - ~ - j j  (3.1) P(A, N) = ~ f sinh u 

which agrees with the result found in ref. 6. 
The average (r2(N'))  of the position (squared) of repeating unit N', 

with both end points fixed at the origin, is found by combination of (2.4), 
(2.15) and (3.1) 

(r2(N,)) 4N12 c h2/2~A'~f~ s i nheus inh ( l -~ )u  
= ~  os ~-~-~5-)-~ sinhZu exp(iur du (3.2) 

The integral is evaluated in the appendix, with the result 

C 2 / 2 ~ z A \  ( r2 (S ' ) )=4N12  osh ~ - ~ - )  

" l + e  x l + 2 e - X c o s y ~ - ~ - 2 ;  Y (3.3) 

where 

4~A 
x = ~ - Nl 2 (3.4a) 

N t  
y = 2 ~  = 2 ~ - -  

N 
(3.4b) 
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It is immediately clear from (3.3) that (r2(N ' ) )  is symmetric under the 
change e ~  1-c~. It is also of some interest to examine the limiting 
behaviour for small and large values of e and ~ respectively. First, note that 
for small 

( (r2(N'))~-2xlZN ' 1 - 2 - ~  , (~ ,~ 1/2) (3.5) 

which is the result for an unconstrained random walk. In the opposite case, 
where c~ = 1/2, one finds 

(r2(N/2)) = 8A(I + cosh x)/sinh x (3.6) 

In this case the constraint imposes a kind of rigidity on the overall shape of 
the polymer, which might have been expected to begin with. 

The third quantity of interest quoted in II is the configuration sum 
density ~2(A, R). Substituting (2.15) into (2.5), one finds 

1 r exp(ig. R) d2g ~2(A, R) = T T ~  J 

f ~ I Nl2 ~2 sinh ~u sinh (1 - ~) U] 
u exp iu{----4- usinh u j du (3.7) x _ ~ sinh u 

Carrying out the integration over g, one finds 

4 f+~ b/2 
Q(A'R)-x(NI2)2  ~ sinh au sinh(1 - a)u 

I R 2 u sinh u ] 
• exp iu~ NI 2 sinh au sinh(1 - ~)uJ du (3.8) 

The Helmholtz free energy is given by 

F(A, R) = - k r l n  f2 (3.9) 

where k denotes Boltzmann's constant and T the absolute temperature. The 
physical quantity which most clearly shows the effects of the constraint is 
the entropic force on repeating unit N'. It is given by 

kT (2 f(A, R) = - v r  = -~- V (3.10) 
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or, more explicitly, 

1079 

8kT U 3 sinh 
f(A, R ) =  - : j ~  

U 

~z(Nl2) 3 f2 R ~ sinh 2 uu sinh2(1 - ~)u 

[ R 2 usinh u ] d u  (3.11) 
xexp iu~ N l 2 s i n h : ~ u s T h ( T _ a )  u 

Note that this elastic force is nonlinear, which again reflects the presence of 
the constraint. 

APPENDIX.  EVALUATION OF AN INTEGRAL 

In this Appendix we evaluate the integral 

I -  = fo~  sinh au sinh(1 --~)Uexp(iu~)du (A.1) 
do~ sinh 2 u 

As ~ is positive, the contour of integration can be closed by half a circle in 
the upper half of the complex u plane. In the limit in which the radius of 
this circle tends to 0% one finds 

I--  2z~i ~ R~ (A.2) 
n = l  

where R,  equals the residue 

d 
Rn = ~uu [sinh ~u sinh(1 - a)u exp(iu~_)] 

l d  
- 2 du {exp(iu~) [cosh u - cosh(1 - 2:0u ] } (A.3) 

evaluated at u = u n -  mri. One finds explicitly 

i )n 2~rna) + (! - 2a) sin 2~na] R , ,=~  ( - 1  e-n~r - cos (A.4) 

and consequently the integral (A.1) is given by 

I =  - ~  ~, e n ~ ( _  1)n [~(1 - cos 2~zn~) + (1 - 2~) sin 2~rn~] (A.5) 
n = l  

To evaluate the various sums occurring in Eq. (A.5), consider the 
geometric series 

S =  ~,, e x p [ - n ( x - i y ) ] ( - 1 ) "  (A.6) 
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The series in (A.6) can easily be evaluated in closed form, leading to 

e-(x-iy) e-2X + e xeiY 

S = - I +  e ( x_ i y )~  l + 2 e _ X c o s y + e _ 2 ~  (A.7) 

A compar ison of real and imaginary parts of (A.6) with (A.7) immediately 
yields 

e -  2x ..~ e - x  c o s  )2 
( -  1) ~ e ~ cos ny = (A.8) 

~=~ 1 + 2e -~  cos y + e  -2~ 

~ ( ~ _ l ) ~ e _ ~ s i n n y  = e ~ s i n y  (A.9) 
n= ~ l + 2 e -  X cos y + e 2x 

Further,  when we substitute y = 0 in (A.8) we obtain 

e x  

n = l  ( - - 1 ) h e  . . . .  1 +  e -~ (A.10) 

Using (A.8)-(A.10) with the values x and y given by (3.4a), (3.4b), we find 
for Eq. (A.5) 

I e ~ e ~ ( e - X + c o s y )  
r l + e  x l + 2 e - X c o s y + e 2 X j  

e-X sin y 
+ (1 - 2ct) 1 + 2e -x  cos y + e - Z x J  (A.11) 
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